Делаем блок питания с регулировкой напряжения. Регулируемый или "лабораторный" блок питания из модулей своими руками Схема регулируемого блока питания на 805 транзисторе

То без регулируемого БП не обойтись никак. При сборке и отладке какого-либо устройства, собираемого радиолюбителем, всегда возникает вопрос от чего его запитать. Здесь выбор небольшой, либо блок питания, либо элементы питания (батарейки). В свое время для этих целей мной был приобретен китайский адаптер с переключателем напряжения на выходе от 1,5 до 12 вольт, но и он оказался не совсем удобен в радиолюбительской практике. Стал искать схему устройства, в котором можно было бы плавно регулировать напряжение на выходе, и на одном из сайтов нашел следующую схему БП:

Регулируемый блок питания - электрическая схема

Номиналы деталей в схеме:

Т1 Трансформатор с напряжением на вторичной обмотке 12-14 вольт.
VD1 КЦ405Б
С1 2000 мкФх25 вольт
R1 470 Ом
R2 10 кОм
R3 1 кОм
D1 Д814Д
VT1 КТ315
VT2 КТ817

В своем блоке питания взял некоторые другие детали, а конкретно - заменил транзистор кт817 на кт805 , просто потому что он у меня уже был и к тому же шел сразу с радиатором. У него можно было удобно подпаяться к выводам с тем, чтобы подключить его впоследствии к плате навесным монтажем. Если есть потребность собрать такой блок питания на большую мощность, нужно взять трансформатор также на 12-14 вольт и соответственно диодный мост тоже на большую мощность. В этом случае потребуется увеличить и площадь радиатора. Я взял, как и было указано на схеме, КЦ405Б . Если требуется, чтобы напряжение регулировалось не от 11,5 вольт до нуля, а выше, нужно подобрать стабилитрон на нужное напряжение и транзисторы с более высоким рабочим напряжением. Трансформатор, разумеется, также должен выдавать на вторичной обмотке более высокое напряжение хотя бы на 3-5 вольт. Подбирать детали придется экспериментально. Мною была разведена печатная плата для этого блока питания:


В этом устройстве регулировка напряжения на выходе осуществляется вращением ручки переменного резистора. Сам реостат не стал впаивать в плату, а прикрепил к верхней крышке устройства и подключил к плате навесным монтажем. На плате подключаемые выводы переменного резистора обозначены как R2.1, R2.2, R2.3. Если напряжение регулируется при вращении ручки не слева (минимум) направо (максимум), нужно поменять местами крайние выводы переменного резистора. На плате + и – обозначены плюс и минус выхода. Для точности измерения тестером при установке нужного напряжения нужно добавить резистор на 1 кОм между плюсом и минусом выхода. На схеме он не указан, на моей печатной плате предусмотрен. Для тех, у кого остались запасы старых транзисторов, могу предложить такой вариант регулируемого блока питания:



Регулируемый блок питания на старых деталях - схема

В моем блоке питания установлены предохранитель, клавишный выключатель, и индикация включения на неоновой лампе, подключено все это навесным монтажем. Для подачи питания к собираемому устройству удобно пользоваться зажимами "крокодил” с изоляцией. Они подключаются к блоку питания с помощью лабораторных зажимов, в которые также сверху можно воткнуть щупы от тестера. Это удобно когда нужно кратковременно подать питание в схему, а "крокодилами” подключиться некуда, например, при ремонте, коснувшись контактов на плате кончиками щупов. Фото готового устройства на рисунке ниже:

Из статьи вы узнаете, как изготовить блок питания регулируемый своими руками из доступных материалов. Его можно использовать для питания бытовой аппаратуры, а также для нужд собственной лаборатории. Источник постоянного напряжения может применяться для тестирования таких устройств, как реле-регулятор автомобильного генератора. Ведь при его диагностике возникает необходимость в двух напряжениях - 12 Вольт и свыше 16. А теперь рассмотрите особенности конструкции блока питания.

Трансформатор

Если устройство не планируется использовать для зарядки кислотных аккумуляторов и питания мощной аппаратуры, то нет необходимости в использовании крупных трансформаторов. Достаточно применить модели, мощность у которых не более 50 Вт. Правда, чтобы сделать регулируемый блок питания своими руками, потребуется немного изменить конструкцию преобразователя. Первым делом нужно определиться с тем, какой диапазон изменения напряжения будет на выходе. От этого параметра зависят характеристики трансформатора блока питания.

Допустим, вы выбрали диапазон 0-20 Вольт, значит, отталкиваться нужно от этих значений. Вторичная обмотка должна иметь на выходе переменное напряжение 20-22 Вольта. Следовательно, на трансформаторе оставляете первичную обмотку, поверх нее проводите намотку вторичной. Чтобы вычислить необходимое количество витков, проведите замер напряжения, которое получается с десяти. Десятая часть этого значения - это напряжение, получаемое с одного витка. После того как будет сделана вторичная обмотка, нужно произвести сборку и стяжку сердечника.

Выпрямитель

В качестве выпрямителя можно использовать как сборки, так и отдельные диоды. Перед тем как сделать регулируемый блок питания, проведите подбор всех его компонентов. Если высокая на выходе, то вам потребуется использовать мощные полупроводники. Желательно их устанавливать на алюминиевых радиаторах. Что касается схемы, то предпочтение нужно отдавать только мостовой, так как у нее намного выше КПД, меньше потерь напряжения при выпрямлении Однополупериодную схему использовать не рекомендуется, так как она малоэффективна, на выходе возникает много пульсаций, которые искажают сигнал и являются источником помех для радиоаппаратуры.

Блок стабилизации и регулировки

Для изготовления стабилизатора и разумнее всего использовать микросборку LM317. Дешевый и доступный каждому прибор, который позволит за считаные минуты собрать качественный блок питания регулируемый своими руками. Но его применение требует одной важной детали - эффективного охлаждения. Причем не только пассивного в виде радиаторов. Дело в том, что регулировка и стабилизация напряжения происходят по весьма интересной схеме. Устройство оставляет ровно то напряжение, которое необходимо, а вот излишки, поступающие на его вход, преобразуются в тепло. Поэтому без охлаждения вряд ли микросборка долго проработает.

Взгляните на схему, в ней нет ничего сверхсложного. Всего три вывода у сборки, на третий подается напряжение, со второго снимается, а первый необходим для соединения с минусом блока питания. Но здесь возникает маленькая особенность - если включить между минусом и первым выводом сборки сопротивление, то появляется возможность проводить регулировку напряжения на выходе. Причем блок питания регулируемый своими руками может изменять выходное напряжение как плавно, так и ступенчато. Но первый тип регулировки наиболее удобный, поэтому его используют чаще. Для реализации необходимо включить сопротивление переменное 5 кОм. Кроме того, между первым и вторым выводом сборки требуется установить постоянный резистор сопротивлением около 500 Ом.

Блок контроля силы тока и напряжения

Конечно, чтобы эксплуатация устройства была максимально удобной, необходимо проводить контроль выходных характеристик - напряжения и силы тока. Строится схема регулируемого блока питания таким образом, что амперметр включается в разрыв плюсового провода, а вольтметр - между выходами устройства. Но вопрос в другом - какой тип измерительных приборов использовать? Самый простой вариант - это установить два LED-дисплея, к которым подключить схему вольт- и амперметра, собранную на одном микроконтроллере.

Но в блок питания регулируемый, своими руками изготавливаемый, можно смонтировать пару дешевых китайских мультиметров. Благо их питание можно произвести непосредственно от устройства. Можно, конечно, использовать и стрелочные индикаторы, только в этом случае нужно проводить градуировку шкалы для

Корпус устройства

Изготавливать корпус лучше всего из легкого, но прочного металла. Идеальным вариантом окажется алюминий. Как уже было упомянуто, схема регулируемого блока питания содержит элементы, которые сильно нагреваются. Следовательно, внутри корпуса нужно монтировать радиатор, который для большей эффективности соединить можно с одной из стенок. Желательно наличие принудительного обдува. Для этой цели можно использовать термовыключатель в паре с вентилятором. Устанавливать их необходимо непосредственно на радиаторе охлаждения.

Подбираем детали. Если в распоряжении имеется радиатор с кулером от старого или неисправного компьютера, то такой шанс не упускаем - это позволит уменьшить габариты устройства, одновременно облегчив тепловой режим стабилизатора.


Микросхемы 5-вольтовых стабилизаторов лучше брать импортные в пластиковом корпусе - в этом случае не понадобится дополнительная электроизоляция.

Транзистор КТ819 можно заменить на КТ853 с некоторым уменьшением запаса мощности, но на работе устройства это не отобразится - транзисторы серии КТ853 рассчитаны на максимальный постоянный ток до 7,5 А. При использовании трансформатора меньшей мощности можно обойтись и менее мощными транзисторами, например, серий КТ805, КТ817, D2396 и др.

В качестве диодов выпрямителя можно использовать диоды Шоттки серии S10C40 или КД270БС, установив их на общий с регулирующим транзистором радиатор - электроизоляция между их корпусами не требуется.

Конденсатор фильтра C1 должен иметь ёмкость не менее 8000 мкФ. Если такого нет, то эту ёмкость можно набрать несколькими конденсаторами - например, как на фото, 4 шт. по 2200 мкФ. Рабочее напряжение конденсаторов C1, C3 и C5 выбираем равным 35 В или несколько большим.

При занятиях каким-либо делом регулярно, люди стремятся облегчить себе труд, путем создания различных приспособлений и устройств. Это в полной мере относится и к радиоделу. При сборке электронных устройств одним из важных вопросов, остается вопрос питания. Поэтому, одно из первых устройств, которое часто собирает начинающий радиолюбитель, это .

Важными характеристиками блока питания, являются его мощность, стабилизация напряжения на выходе, отсутствие пульсаций, что может проявиться, например, при сборке и запитывании усилителя, от этого блока питания в виде фона или гула. И наконец, нам важно, чтобы блок питания был универсальным, чтобы его можно было применить для питания множества устройств. А для этого необходимо, чтобы он мог выдавать различное напряжение на выходе.

Частичным решением проблемы, может стать китайский адаптер с переключением напряжения на выходе. Но такой блок питания не имеет возможности плавной регулировки и в нем отсутствует стабилизация напряжения. Иными словами напряжение на его выходе “скачет” в зависимости от величины питающего напряжения 220 вольт, которое часто проседает по вечерам, особенно если вы живете в частном доме. Также напряжение на выходе блока питания (БП), может уменьшиться при подключении более мощной нагрузки. Всех этих недостатков, лишен предлагаемый в этой статье блок питания, со стабилизацией и регулировкой напряжения на выходе. Вращением ручки переменного резистора мы можем выставить любое напряжение в пределах от 0 и до 10.3 вольт, с возможностью плавной регулировки. Напряжение на выходе блока питания, мы выставляем по показаниям мультиметра в режиме вольтметра, постоянный ток (DCV).

Это может пригодиться не раз, например, при проверке светодиодов, которые, как известно не любят, когда на них подают завышенное, по сравнению с номинальным напряжение. От этого их срок службы может резко сократиться, а в особо тяжелых случаях светодиод может сразу же сгореть. Ниже приведена схема этого блока питания:

Схема данного РБП является стандартной и не претерпела существенных изменений с 70-х годов прошлого века. Первые варианты схем были с применением германиевых транзисторов, более поздние варианты были с применением современной элементной базы. Данный блок питания способен выдавать мощность до 800 - 900 миллиампер, при наличии трансформатора обеспечивающего нужную мощность.

Ограничение в схеме по применяемому диодному мосту, который допускает токи максимум до 1 ампера. Если потребуется увеличить мощность данного блока питания, нужно взять боле мощный трансформатор, диодный мост и увеличить площадь радиатора, либо если размеры корпуса не позволяют это сделать, можно применить активное охлаждение (кулер). Ниже приведен на рисунке список деталей необходимых для сборки:

В данном блоке питания применен отечественный мощный транзистор КТ805АМ. На фото ниже можно ознакомиться с его внешним видом. На соседнем рисунке приведена его цоколевка:

Данный транзистор необходимо будет прикрепить на радиатор. В случае крепления радиатора к металлическому корпусу блока питания, например как это сделано у меня, нужно будет поставить слюдяную прокладку между радиатором и металлической пластиной транзистора, к которой должен прилегать радиатор. Для улучшения теплоотдачи от транзистора к радиатору, нужно применить термопасту. Подойдет в принципе любая, применяемая для нанесения на процессор ПК, например та же КПТ-8.

Трансформатор должен выдавать на вторичной обмотке напряжение 13 вольт, но в принципе допустимо напряжение в пределах 12-14 вольт. В блоке питания установлен фильтрующий электролитический конденсатор, ёмкостью 2200 мкф, (можно больше, меньше нежелательно), на напряжение 25 вольт. Можно взять конденсатор, рассчитанный на большее напряжение, но следует помнить, что у таких конденсаторов обычно и размеры больше. На рисунке ниже приведена печатная плата для программы sprint-layout, которую можно скачать в общем архиве, прикрепленном архиве .

Я собрал блок питания не совсем по этой плате, так как у меня трансформатор с диодным мостом и фильтрующим конденсатором шли на отдельной плате, но сути это не меняет.

Переменный резистор и мощный транзистор, в моем варианте подключены навесным монтажом, на проводках. На плате обозначены контакты переменного резистора R2, R2.1 - R2.3, R2.1 это левый контакт переменного резистора, остальные отсчитываются от него. Если все-таки при подключении были спутаны левый и правый контакты потенциометра, и регулировка осуществляется не слева - минимум, направо - максимум, нужно поменять местами провода, идущие к крайним выводам переменного резистора. В схеме предусмотрена индикация включения на светодиоде. Включение - отключение осуществляется тумблером, путем коммутации питания 220 вольт, подводимого к первичной обмотке трансформатора. Так выглядел блок питания на этапе сборки:

Питание подается на блок питания через родной разъем блока питания АТХ компьютера, с помощью стандартного отсоединяемого кабеля. Такое решение позволяет избежать путаницы проводов, которая часто возникает на столе у радиолюбителя.

Напряжение на выходе блока питания снимается с лабораторных зажимов, под которые можно зажать любой провод. Также в эти зажимы, можно подключить, воткнув сверху, стандартные щупы от мультиметра с крокодилами на концах, для более удобной подачи напряжения на собранную схему.

Хотя при желании сэкономить, можно ограничиться простыми проводками на концах с крокодилами, зажимаемыми с помощью лабораторных зажимов. В случае использования металлического корпуса, наденьте кембрик подходящего размера на винт крепления зажима, во избежание замыкания зажима на корпус. Подобный блок питания трудится у меня уже не меньше 6 лет, и доказал оправданность его сборки, и удобство применения в повседневной практике радиолюбителя. Всем удачной сборки! Специально для сайта "Электронные схемы " AKV.

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.



Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.


Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Loading...Loading...