Однородное электрическое поле создано равномерно. Напряженность поля заряженной плоскости

Потенциал поля

Потенциал поля

Потенциал поля

потенциалов поля

Потенциал электрического поля точечного заряда Q в точке:

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R , заряженной с постоянной линейной плотностью , где dq – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре ) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

. (2.5.6)

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

27. Потенциал поля, создаваемого равномерно заряженной бесконечной плоскостью.

Потенциал поля - это энергетическая характеристика поля, характеризует потенциальнную энергию, которой обладал бы положительный единичный заряд, помещенный в данную точку поля.

Единица электрического потенциала - вольт (В).

Потенциал поля равнен отношению потенциальной энергии заряда к этому заряду:

Потенциал поля является энергетической характеристикой электрического поля и как скалярная величина может принимать положительные или отрицательные значения.

Физический смысл имеет разность потенциалов поля , так как через нее выражается работа сил поля по перемещению заряда.

Поле равномерно заряженной бесконечной плоскости.

Введем понятие поверхностной плотности заряда >0, численно равной заряду единицы площади:

В силу однородности и изотропности пространства силовые линии поля равномерно заряженной бесконечной плоскости должны быть перпендикулярными к ней и иметь равномерную густоту, что соответствует определению однородности поляЕ =const. В качестве "удобной" замкнутой поверхности выберем прямой цилиндр, боковая поверхность которого параллельна силовым линиям (везде на ней 0 и, следовательно, поток сквозь нее равен 0), а торцевые поверхности площадью S - параллельны заряженной плоскости (так что везде на них 1):



Поток однородного поля Е сквозь обе перпендикулярные ему торцевые поверхности S равен просто Е 2S, а заряд, сосредоточенный на участке площадью S заряженной поверхности, равен S:

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где dq – заряд, сосредоточенный на площади dS ; dS – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS , расположенными симметрично относительно плоскости (рис. 2.12).


Рис. 2.11 Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток Ф Е через боковую часть поверхности цилиндра равен нулю, т.к. Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

;

откуда видно, что напряженность поля плоскости S равна:

Электростатическое поле обладает важным свойством: Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда. Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями. Следствием независимости работы от формы траектории является следующее утверждение: Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными . На рис. 1.4.2 изображены силовые линии кулоновского поля точечного заряда Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение Работа ΔA кулоновских сил на этом перемещении равна

Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.

Если электростатическое поле создается совокупностью точечных зарядов то при перемещении пробного заряда q работа A результирующего поля в соответствии спринципом суперпозиции будет складываться из работ кулоновских полей точечных зарядов: Так как каждый член суммы не зависит от формы траектории, то и полная работа A результирующего поля не зависит от пути и определяется только положением начальной и конечной точек.

Свойство потенциальности электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Для этого в пространстве выбирается некоторая точка (0), и потенциальная энергия заряда q , помещенного в эту точку, принимается равной нулю.

Потенциальная энергия заряда q , помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе A 10 , которую совершит электростатическое поле при перемещении заряда q из точки (1) в точку (0):

W p1 = A 10 .

(В электростатике энергию принято обозначать буквой W , так как буквой E обозначают напряженность поля.)

Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет


ПОИСК ПО САЙТУ:

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где dq – заряд, сосредоточенный на площади dS; dS – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS , расположенными симметрично относительно плоскости (рис. 2.12).


Рис. 2.11 Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток Ф Е через боковую часть поверхности цилиндра равен нулю, т.к.Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

;

откуда видно, что напряженность поля плоскости S равна:

(2.5.1)

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .

Тогда внутри плоскостей

(2.5.2)

Вне плоскостей напряженность поля

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

где S – площадь обкладок конденсатора. Т.к. , то

. (2.5.5)

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где dq – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре ) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

. (2.5.6)

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16).

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

8. Электростатическое поле создается равномерно заряженной бесконечной плоскостью. Покажите, что это поле является однородным.

Пусть поверхностная плотность заряда равна s. Очевидно что вектор Е может быть только перпендикулярным заряженной плоскости. Кроме того очевидно, что в симметричных относительно этой плоскости точках вектор Е одинаков по модулю и противоположен по направлению. Такая конфигурация поля подсказывает, что в качестве замкнутой поверхности следует выбрать прямой цилиндр, где предполагается что s больше нуля. Поток сквозь боковую поверхность этого цилиндра равен нулю, и поэтому полный поток через всю поверхность цилиндра будет равным 2*Е*DS, где DS – площадь каждого торца. Согласно теореме Гаусса

где s*DS – заряд заключенный внутри цилиндра.

Точнее это выражение следует записать так:

где Еn – проекция вектора Е на нормаль n к заряженной плоскости, причем вектор n направлен от этой плоскости.

Тот факт, что Е не зависит от расстояния до плоскости, означает, что соответствующее электрическое поле является однородным.


9. Из медной проволоки изготовлена четверть окружности радиусом 56 см. По проволоке равномерно распределен заряд с линейной плотностью 0,36 нКл/м. Найдите потенциал в центре окружности.

Так как заряд линейно распределен по проволоке для нахождения потенциала в центре воспользуемся формулой:

Где s - линейная плотность заряда, dL – элемент проволоки.


10. В электрическом поле, созданном точечным зарядом Q, по силовой линии из точки расположенной на расстоянии r 1 от заряда Q в точку, расположенную на расстоянии r 2 , перемещается отрицательный заряд -q. Найдите приращение потенциальной энергии заряда -q на этом перемещении.

По определению потенциал – это величина, численно равная потенциальной энергии единичного положительного заряда в данной точке поля. Следовательно потенциальная энергия заряда q 2:


11. Два одинаковых элемента с э.д.с. 1,2 В и внутренним сопротивлением 0,5 Ом соединены параллельно. Полученная батарея замкнута на внешнее сопротивление 3,5 Ом. Найдите силу тока во внешней цепи.

Согласно закону Ома для всей цепи сила тока во внешней цепи:

Где E` - ЭДС батареи элементов,

r` - внутреннее сопротивление батареи, которое равно:

ЭДС батареи равна сумме ЭДС трех последовательно соединенных элементов:

Следовательно:


12 В электрическую цепь включены последовательно медная и стальная проволоки равной длины и диаметра. Найдите отношение количеств тепла выделяющегося в этих проволоках.

Рассмотрим проволоку длиной L и диаметром d, изготовленную из материала с удельным сопротивление p. Сопротивление проволоки R можно найти по формуле

Где s= – площадь поперечного сечения проволоки. При силе тока I за время t в проводнике выделяется количество теплоты Q:

При этом, падение напряжения на проволоке равно:

Удельное сопротивление меди:

p1=0.017 мкОм*м=1.7*10 -8 Ом*м

удельное сопротивление стали:

p2=10 -7 Ом*м

так как проволоки включены последовательно, то силы тока в них одинаковы и за время t в них выделяются количества теплоты Q1 и Q2:


12. В однородном магнитном поле находится круговой виток с током. Плоскость витка перпендикулярна силовым линиям поля. Докажите, что результирующая сил, действующих со стороны магнитного поля на контур, равна нулю.

Так как круговой виток с током находится в однородном магнитном поле, на него действует сила Ампера. В соответствии с формулой dF=I результирующая амперова сила, действующая на виток с током определяется:

Где интегрирование проводится по данному контуру с током I. Так как магнитное поле однородно, то вектор В можно вынести из-под интеграла и задача сволится к вычислению векторного интеграла . Этот интеграл представляет замкнутую цепочку элементарных векторов dL, поэтому он равен нулю. Значит и F=0, то есть результирующая амперова сила равна нулю в однородном магнитном поле.


13. По короткой катушке, содержащей 90 витков диаметром 3 см, идет ток. Напряженность магнитного поля, созданного током на оси катушки на расстоянии 3 см от нее равна 40 А/м. Определите силу тока в катушке.

Считая, что магнитная индукция в точке А есть суперпозиция магнитных индукций, создаваемых каждым витком катушки в отдельности:

Для нахождения В витка воспользуемся законом Био-Савара-Лапласа.

Где, dBвитка – магнитная индукция поля, создаваемая элементом тока IDL в точке, определяемой радиус-вектором r Выделим на конце элемент dL и от него в точку А проведем радиус-вектор r. Вектор dBвитка направим в соответствие с правилом буравчика.

Согласно принципу суперпозиции:

Где интегрирование ведется по всем элементам dLвитка. Разложим dBвитка на две составляющие dBвитка(II) – параллельную плоскости кольца и dBвитка(I) – перпендикулярную плоскости кольца. Тогда

Заметив, что из соображений симметрии и что векторы dBвитка(I) сонаправленные, заменим векторное интегрирование скалярным:

Где dBвитка(I) =dBвитка*cosb и

Поскольку dl перпендикулярен r

Сократим на 2p и заменим cosb на R/r1

Выразим отсюда I зная что R=D/2

согласно формуле связывающей магнитную индукцию и напряженность магнитного поля:

тогда по теореме Пифагора из чертежа:


14. В однородное магнитное поле в направлении перпендикулярном силовым линиям влетает электрон со скоростью 10۰10 6 м/с и движется по дуге окружности радиусом 2,1 см. Найдите индукцию магнитного поля.

На электрон, движущийся в однородном магнитном поле будет действовать сила Лоренца, перпендикулярная скорости электрона и следовательно направленная к центру окружности:

Так как угол между v и И равен 90 0:

Так как сила Fл направлена к центру окружности, и электрон двигается по окружности под действием этой силы, то

Выразим магнитную индукцию:


15. Квадратная рамка со стороной 12 см, изготовленная из медной проволоки, помещена в магнитное поле, магнитная индукция которого меняется по закону В=В 0 ·Sin(ωt), где В 0 =0,01 Тл, ω=2·π/Т и Т=0,02 с. Плоскость рамки перпендикулярна к направлению магнитного поля. Найдите наибольшее значение э.д.с. индукции, возникающей в рамке.

Площадь квадратной рамки S=a 2 . Изменение магнитного потока dj, при перпендикулярности плоскости рамки dj=SdB

ЭДС индукции определяется

Е будет максимальна при cos(wt)=1

Бесконечная плоскость, заряженная с поверхностной плотностью заряда : для расчета напряженности электрического поля, созданного бесконечной плоскостью, выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания – параллельны ей и одно из оснований проходит через интересующую нас точку поля. Согласно теореме Гаусса поток вектора напряженности электрического поля сквозь замкнутую поверхность равен:

Ф= , с другой стороны он же: Ф=E

Приравняем правые части уравнений:

Выразим = - через поверхностную плотность заряда и найдем напряженность электрического поля:

Найдем напряженность электрического поля между разноименно заряженными пластинами с одинаковой поверхностной плотностью:

(3)

Найдем поле вне пластин:

; ; (4)

Напряженность поля заряженной сферы

(1)

Ф= (2) т. Гаусса

для r < R

; , т.к. (внутри сферы нет зарядов)

Для r = R

( ; ; )

Для r > R

Напряженность поля, созданного шаром, заряженным равномерно по всему объему

Объемная плотность заряда,

распределенного по шару:

Для r < R

( ; Ф= )

Для r = R

Для r > R

РАБОТА ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ ПО ПЕРЕМЕЩЕНИЮ ЗАРЯДА

Электростатическое поле - эл. поле неподвижного заряда.
Fэл, действующая на заряд, перемещает его, совершая раборту.
В однородном электрическом поле Fэл = qE - постоянная величина

Работа поля (эл. силы)не зависит от формы траектории и на замкнутой траектории = нулю.

В случае, если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль какой-либо траектории (рис. 1) двигается другой точечный заряд Q 0 , то сила, которая приложена к заряду, совершает некоторую работу. Работа силы F на элементарном перемещении dl равна Так как dl /cosα=dr, то Работа при перемещении заряда Q 0 из точки 1 в точку 2 (1) от траектории перемещения не зависит, а определяется только положениями начальной 1 и конечной 2 точек. Значит, электростатическое поле точечного заряда является потенциальным, а электростатические силы - консервативными Из формулы (1) видно, что работа, которая совершается при перемещении электрического заряда во внешнем электростатическом поле по произвольному замкнутому пути L, равна нулю, т.е. (2) Если в качестве заряда, которого перемещают в электростатическом поле, взять единичный точечный положительный заряд, то элементарная работа сил поля на пути dl равна Еdl = E l dl , где E l = Ecosα - проекция вектора Е на направление элементарного перемещения. Тогда формулу (2) можно представить в виде (3) Интеграл называется циркуляцией вектора напряженности. Значит, циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю. Силовое поле, которое обладает свойством (3), называетсяпотенциальным. Из равенства нулю циркуляции вектора Е следует, что линии напряженности электростатического поля не могут быть замкнутыми, они обязательно начинаются и кончаются на зарядах (на положительных или отрицательных) или же идут в бесконечность. Формула (3) верна только для электростатического поля. В дальнейшем будет показано, что с случае поля движущихся зарядов условие (3) не верно (для него циркуляция вектора напряженности отлична от нуля).

Теорема о циркуляции для электростатического поля.

Поскольку электростатическое поле является центральным, то силы, действующие на заряд в таком поле, являются консервативными. Так как представляет собой элементарную работу, которую силы поля производят над единичным зарядом, то работа консервативных сил на замкнутом контуре равна

Потенциал

Система "заряд - электростатическое поле" или "заряд - заряд" обладает потенциальной энергией, подобно тому, как система "гравитационное поле - тело" обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называетсяпотенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал - это характеристика электростатического поля.


Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

Потенциальная энергия поля - это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.


Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде


Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Это энергия системы неподвижных точечных зарядов, энергия уединенного заряженного проводника и энергия заряженного конденсатора.

Если имеется система двух заряженных проводников (конденсатор), то полная энергия системы равна сумме собственных потенциальных энергий проводников и энергии их взаимодействия:

Энергия электростатического поля системы точечных зарядов равна:

Равномерно заряженная плоскость.
Напряжённость электрического поля, создаваемого бесконечной плоскостью, заряженной с поверхностной плотностью заряда , можно рассчитать, воспользовавшись теоремой Гаусса.

Из условий симметрии следует, что вектор E везде перпендикулярен плоскости. Кроме того, в симметричных относительно плоскости точках вектор E будет одинаков по величине и противоположен по направлению.
В качестве замкнутой поверхности выберем цилиндр, ось которого перпендикулярна плоскости, а основания расположены симметрично относительно плоскости, как показано на рисунке.
Так как линии напряжённости параллельны образующим боковой поверхности цилиндра, то поток через боковую поверхность равен нулю. Поэтому поток вектораЕ через поверхность цилиндра

,

где - площадь основания цилиндра. Цилиндр вырезает из плоскости заряд . Если плоскость находится в однородной изотропной среде с относительной диэлектрической проницаемостью , то

Когда напряженность поля не зависит от расстояния между плоскостями, такое поле называют однородным. График зависимости E (x ) для плоскости.

Разность потенциалов между двумя точками, находящимися на расстояниях R 1 и R 2 от заряженной плоскости, равна

Пример 2. Две равномерно заряженные плоскости.
Рассчитаем напряжённость электрического поля, создаваемого двумя бесконечными плоскостями. Электрический заряд распределен равномерно с поверхностной плотностями и . Напряженность поля найдем как суперпозицию напряжённостей полей каждой из плоскостей. Электрическое поле отлично от нуля только в пространстве между плоскостями и равно .

Разность потенциалов между плоскостями , где d - расстояние между плоскостями.
Полученные результаты могут быть использованы для приближённого расчета полей, создаваемых плоскими пластинами конечных размеров, если расстояния между ними много меньше их линейных размеров. Заметные погрешности таких расчётов появляются при рассмотрении полей вблизи краев пластин. График зависимости E (x ) для двух плоскостей.

Пример 3. Тонкий заряженный стержень.
Для расчёта напряжённости электрического поля, создаваемого очень длинным заряженным с линейной плотностью заряда стержнем, используем теорему Гаусса.
На достаточно больших расстояниях от концов стержня линии напряжённости электрического поля направлены радиально от оси стержня и лежат в плоскостях, перпендикулярных этой оси. Во всех точках, равноудалённых от оси стержня, численные значения напряжённости одинаковы, если стержень находится в однородной изотропной среде с относительной диэлектрической
проницаемостью .

Для расчета напряженности поля в произвольной точке, находящейся на расстоянииr от оси стержня, проведём через эту точку цилиндрическую поверхность
(см. рисунок). Радиус этого цилиндра равен r , а его высота h .
Потоки вектора напряжённости через верхнее и нижнее основания цилиндра будут равны нулю, так как силовые линии не имеют составляющих, нормальных к поверхностям этих оснований. Во всех точках боковой поверхности цилиндра
Е = const.
Следовательно, полный поток вектора E через поверхность цилиндра будет равен

,

По теореме Гаусса, поток вектора E равен алгебраической сумме электрических зарядов, находящихся внутри поверхности (в данном случае цилиндра) делённой на произведение электрической постоянной и относительной диэлектрической проницаемости среды

где заряд той части стержня, которая находится внутри цилиндра. Следовательно, напряжённость электрического поля

Разность потенциалов электрического поля между двумя точками, находящимися на расстояниях R 1 и R 2 от оси стержня, найдём, пользуясь связью между напряжённостью и потенциалом электрического поля. Так как напряжённость поля изменяется только в радиальном направлении, то

Пример 4. Заряженная сферическая поверхность.
Электрическое поле, создаваемое сферической поверхностью, по которой равномерно распределён электрический заряд с поверхностной плотностью , имеет центрально-симметричный характер.

Линии напряжённости направлены по радиусам от центра сферы, а модуль вектораE зависит только от расстояния r от центра сферы. Для расчёта поля выберем замкнутую сферическую поверхность радиуса r .
При r o Е = 0.
Напряжённость поля равна нулю, так как внутри сферы заряд отсутствует.
При r > R (вне сферы), согласно теореме Гаусса

,

где - относительная диэлектрическая проницаемость среды, окружающей сферу.

.

Напряжённость уменьшается по тому же закону, что и напряженность поля точечного заряда, т. е. по закону .
При r o .
При r > R (вне сферы) .
График зависимости E (r ) для сферы.

Пример 5. Заряженный по объему шар из диэлектрика.
Если шар радиусом R из однородного изотропного диэлектрика с относительной проницаемостью равномерно заряжен по объёму с плотностью , то создаваемое им электрическое поле также является центрально-симметричным.
Как и в предыдущем случае, выберем замкнутую поверхность для расчёта потока вектора E в виде концентрической сферы, радиус которой r может изменяться от 0 до .
При r < R поток вектора E через эту поверхность будет определяться зарядом

Так что

При r < R (внутри шара) .
Внутри шара напряжённость возрастает прямо пропорционально расстоянию от центра шара. Вне шара (при r > R ) в среде с диэлектрической проницаемостью , поток вектора E через поверхность будет определяться зарядом .
При r o >R o (вне шара) .
На границе "шар - окружающая среда" напряжённость электрического поля изменяется скачком, величина которого зависит от соотношения диэлектрических проницаемостей шара и среды. График зависимости E (r ) для шара ().

Вне шара (r > R ) потенциал электрического поля меняется по закону

.

Внутри шара (r < R ) потенциал описывается выражением

В заключение, приведем выражения для расчета напряженностей полей заряженных тел, различной формы

Разность потенциалов
Напряжение - разность значений потенциала в начальной и конечнойточках траектории. Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля. Разность потенциалов (напряжение) не зависит от выбора системы координат!
Единица разности потенциалов Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Проводник – это твердое тело, в котором имеются “свободные электроны”, перемещающиеся в пределах тела.

Металлические проводники в целом являются нейтральными: в них поровну отрицательных и положительных зарядов. Положительно заряженные – это ионы в узлах кристаллической решетки, отрицательные – электроны, свободно перемещающиеся по проводнику. Когда проводнику сообщают избыточное количество электронов, он заряжается отрицательно, если же у проводника «отбирают» какое-то количество электронов, он заряжается положительно.

Избыточный заряд распределяется только по внешней поверхности проводника.

1 . Напряженность поля в любой точке внутри проводника равна нулю.

2 . Вектор на поверхности проводника направлен по нормали к каждой точке поверхности проводника.

Из того факта, что поверхность проводника эквипотенциальна следует, что непосредственно у этой поверхности поле направлено по нормали к ней в каждой точке (условие 2 ). Если бы это было не так, то под действием касательной составляющей заряды пришли бы в движение по поверхности проводника. т.е. равновесие зарядов на проводнике было бы невозможным.

Из 1 следует, что поскольку

Внутри проводника избыточных зарядов нет .

Заряды распределяются только на поверхности проводника с некоторой плотностью s и находятся в очень тонком поверхностном слое (его толщина около одного-двух межатомных расстояний).

Плотность заряда - это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр [Кл/м], в Кулонах на квадратный метр [Кл/м²] и в Кулонах на кубический метр [Кл/м³], соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды.

Общая задача электростатики

Вектор напряженности ,

по теореме Гаусса

- уравнение Пуассона.

В случае - нет зарядов между проводниками, получаем

- уравнение Лапласа.

Пусть известны граничные условия на поверхностях проводников: значения ; тогда данная задача имеет единственное решение согласно теореме единственности.

При решении задачи определяется значение и затем поле между проводниками определяется распределение зарядов на проводниках (по вектору напряженности у поверхности).

Рассмотрим пример. Найдем напряженность в пустой полости проводника.

Потенциал в полости удовлетворяет уравнению Лапласа;

потенциал на стенках проводника .

Решение уравнения Лапласа в этом случае тривиальное, и по теореме единственности других решений нет

, т.е. поля в полости проводника нет.

Уравне́ние Пуассо́на - эллиптическое дифференциальное уравнение в частных производных, которое, среди прочего, описывает

· электростатическое поле,

· стационарное поле температуры,

· поле давления,

· поле потенциала скорости в гидродинамике.

Оно названо в честь знаменитого французского физика и математика Симеона Дени Пуассона.

Это уравнение имеет вид:

где - оператор Лапласа или лапласиан, а - вещественная или комплексная функция на некотором многообразии.

В трёхмерной декартовой системе координат уравнение принимает форму:

В декартовой системе координат оператор Лапласа записывается в форме и уравнение Пуассона принимает вид:

Если f стремится к нулю, то уравнение Пуассона превращается в уравнение Лапласа (уравнение Лапласа - частный случай уравнения Пуассона):

Уравнение Пуассона может быть решено с использованием функции Грина; см., например, статью экранированное уравнение Пуассона. Есть различные методы для получения численных решений. Например, используется итерационный алгоритм - «релаксационный метод».

Будем рассматривать уединенный проводник, т. е. проводник, значительно удаленный от других проводников, тел и зарядов. Его потенциал, как известно, прямо пропорционален заряду проводника. Из опыта известно, что разные проводники, будучи при этом одинаково заряженными, имеют различные потенциалы. Поэтому для уединенного проводника можно записать Величину (1) называют электроемкостью (или просто емкостью) уединенного проводника. Емкость уединенного проводника задается зарядом, сообщение которого проводнику изменяет его потенциал на единицу. Емкость уединенного проводника зависит от его размеров и формы, но не зависит от материала, формы и размеров полостей внутри проводника, а также его агрегатного состояния. Причиной этому есть то, что избыточные заряды распределяются на внешней поверхности проводника. Емкость также не зависит ни от заряда проводника, ни от его потенциала. Единица электроемкости - фарад (Ф): 1 Ф - емкость такого уединенного проводника, у которого потенциал изменяется на 1 В при сообщении ему заряда 1 Кл. Согласно формуле потенциала точечного заряда, потенциал уединенного шара радиуса R, который находится в однородной среде с диэлектрической проницаемостью ε, равен Применяя формулу (1), получим, что емкость шара (2) Из этого следует, что емкостью 1 Ф обладал бы уединенный шар, находящийся в вакууме и имеющий радиус R=C/(4πε 0)≈9 10 6 км, что примерно в 1400 раз больше радиуса Земли (электроемкость Земли С≈0,7 мФ). Следовательно, фарад - довольно большая величина, поэтому на практике применяются дольные единицы - миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ). Из формулы (2) следует также, что единица электрической постоянной ε 0 - фарад на метр (Ф/м) (см. (78.3)).

Конденса́тор (от лат. condensare - «уплотнять», «сгущать») - двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накоплениязаряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Мкость

Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU ). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой: , где -относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице), - электрическая постоянная, численно равная 8,854187817·10 −12 Ф/м. Эта формула справедлива, лишь когда d много меньше линейных размеров пластин.

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна

Или

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

[править]Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью - отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

В электрических цепях применяются различные способы соединения конденсаторов . Соединение конденсаторов может производиться: последовательно , параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.

Рисунок 1. Способы соединения конденсаторов.

1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

(13.10)

а на его поверхности (r=R)

(13.11)

В точке В, лежащей внутри шара на расстояний r от его центра (r>R), поле определяется лишь зарядом , заключенным внутри сферы радиусом r. Поток вектора напряженности через эту сферу равен

с другой стороны, в соответствии с теоремой Гаусса

Из сопоставления последних выражений следует

(13.12)

где- диэлектрическая проницаемость внутри шара. Зависимость напряженности поля, создаваемого заряженной сферой, от расстояния до центра шара приведена на (рис.13.10)

3. Напряженность поля равномерно заряженной бесконечной прямолинейной нити (или цилиндра).

Предположим, что полая цилиндрическая поверхность радиуса R заряжена с постоянной линейной плотностью .

Проведем коаксиальную цилиндрическую поверхность радиуса Поток вектора напряженности через эту поверхность

По теореме Гаусса

Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:

(13.13)

Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10).

Суммарный поток вектора; напряженности равен вектору , умноженному на площадь S первого основания, плюс поток вектора через противоположное основание. Поток напряженности через боковую поверхность цилиндра равен нулю, т.к. линии напряженности их не пересекают. Таким образом, С другой стороны по теореме Гаусса

Следовательно

но тогда напряженность поля бесконечной равномерно заряженной плоскости будет равна

Loading...Loading...